top of page
Writer's pictureStructures Insider

The difference between Buckling, Compression & Shear

Updated: Jun 27, 2021



  • A column is a structural element that transfers the weight of the structure above to other structural elements below through compression.


  • Column history goes back to the Ancient Egyptians where stoned columns were firstly constructed


  • Nowadays most of the columns are made of a combination of concrete and steel ( reinforced concrete)


  • Three main failure mode of concrete columns are Buckling, Pure Compression and Shear.

 

1.Buckling:


Slender structural members loaded axially in compression will experience buckling. A relatively slender compression member (e.g. a column) may deflect laterally and fail by bending rather than failing by direct compression.


The behaviour can be demonstrated by compressing a plastic ruler.


When lateral bending occurs, we can say that the column has buckled.


Buckling is one of the major causes of failures in structures, and therefore the possibility of buckling should always be considered in the design.



 

Are you a student? Join the SI Platform now


Submit your work 📝 and get featured 📌 on our website 💥

 

Definition of Bending Moment


A bending moment (BM) is a measure of the bending effect that can occur when an external force (or moment) is applied to a structural element that causes the element to deform and bend.


This concept is important in structural engineering as it is can be used to calculate where, and how much bending may occur when forces are applied determining the maximum deformation a structural member will undergo.


A simple way to visualise bending moment is a diagram of a simply supported beam which means both ends of the beam can rotate and hence there is no bending moment at those locations.


The diagram below shows that maximum bending moment is governed in the mid-span of this simply supported beam and maximum shear occurs at the supports.

Essential Books for Civil Engineering Students


SI's Choice












 

2.Pure Compression:


Compression is one of the fundamental mechanics of deformable bodies.


DEFINITION:


compression /kəmˈprɛʃ(ə)n/

noun

  • the action of compressing or being compressed.

  • the reduction in volume (causing an increase in pressure) of the fuel mixture in an internal combustion engine before ignition.



The axial force P acting at the cross-section is the resultant of the continuously distributed stresses. Elements that are pushed together or carry a load, that tend to compress, the forces are called compressive stress.



3.Shear:


Tension is about pulling and compression is about pushing, then shear is about SLIDING.


Shearing forces are unaligned forces pushing one part of a body in one specific direction, and another part of the body in the opposite direction.






  • Shear strain = angle through which material is distorted as a result of shear stress N.


William A. Nash defines shear force in terms of planes: "If a plane is passed through a body, a force acting along this plane is called a shear force or shearing force."


 
 

If you want to better understand these concepts we would recommend this book.


Structures OR WHY THINGS DONT FALL DOWN, J. E. Gordon


Key features 🌉🏢


  • Main Topics: General understanding of Structures

  • Content Summary: Compression and bending structures, Tension structures, The difficult birth of the science of elasticity.




This book is ideal for someone that is considering studying civil engineering. The book provides a fundamental understanding of basic concepts and explains the history behind the complex formulas used in solid mechanics.


It is for anyone who has wondered why suspension bridges don't collapse under eight lanes of traffic, how dams hold back thousands of gallons of water, or what principles guide the design of skyscraper.


Suggested by Elon Musk: When Musk started SpaceX, he was coming from a coding background. But he took it upon himself to learn the fundamentals of rocket science.

"It is really, really good if you want a primer on structural design," Musk said in an interview with KCRW, a Southern California radio station.

 

You May Also Like:


 

5 Comments


MZKO QPFQ
MZKO QPFQ
9 hours ago
Like

MZKO QPFQ
MZKO QPFQ
14 hours ago

google seo google seo技术飞机TG-cheng716051;

03topgame 03topgame

Jogos JOGOS

Fortune Tiger Fortune Tiger;

Fortune Tiger Slots Fortune Tiger…

Fortune Tiger Fortune Tiger;

EPS машины EPS машины;

Fortune Tiger Fortune Tiger;

EPS Machine EPS Cutting Machine;

EPS Machine EPS and EPP…

EPP Machine EPP Shape Moulding…

EPS Machine EPS and EPP…

EPTU Machine ETPU Moulding Machine

EPS Machine EPS Cutting Machine;

Like

ENTE SECX
ENTE SECX
Nov 14

谷歌seo优化 谷歌SEO优化;

Fortune Tiger Fortune Tiger;

Fortune Tiger Fortune Tiger;

Fortune Tiger Slots Fortune Tiger Slots;

Fortune Tiger Fortune Tiger;

Fortune Tiger Fortune Tiger;

Fortune Tiger Slots Fortune Tiger Slots;

Like

XTGY TPTQ
XTGY TPTQ
Nov 11

EPS Machine EPS Cutting…

EPS Machine Eps Raw…

EPS Machine EPS Recycling…

EPS Machine EPS Mould;

EPS Machine EPS Block…

EPP Machine EPP Shape…

EPTU Machine ETPU Moulding…

EPS Machine Aging Silo…

EPTU Machine ETPU Moulding…

EPS Machine EPS and…

EPS Machine EPS and…

AEON MINING AEON MINING

AEON MINING AEON MINING

KSD Miner KSD Miner

KSD Miner KSD Miner

BCH Miner BCH Miner

BCH Miner BCH Miner

Like

XTGY TPTQ
XTGY TPTQ
Nov 11

EPS Machine EPS Cutting…

EPS Machine Eps Raw…

EPS Machine EPS Recycling…

EPS Machine EPS Mould;

EPS Machine EPS Block…

EPP Machine EPP Shape…

EPTU Machine ETPU Moulding…

EPS Machine Aging Silo…

EPTU Machine ETPU Moulding…

EPS Machine EPS and…

EPS Machine EPS and…

AEON MINING AEON MINING

AEON MINING AEON MINING

KSD Miner KSD Miner

KSD Miner KSD Miner

BCH Miner BCH Miner

BCH Miner BCH Miner

Like
bottom of page